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Abstract. The design of concurrent software systems, in particular process-aware
information systems, involves behavioral modeling at various stages. Recently,
approaches to behavioral analysis of such systems have been based on declarative
abstractions defined as sets of behavioral relations. However, these relations
are typically defined in an ad-hoc manner. In this paper, we address the lack
of a systematic exploration of the fundamental relations that can be used to
capture the behavior of concurrent systems, i.e., co-occurrence, conflict, causality,
and concurrency. Besides the definition of the spectrum of behavioral relations,
which we refer to as the 4C spectrum, we also show that our relations give rise
to implication lattices. We further provide operationalizations of the proposed
relations, starting by proposing techniques for computing relations in unlabeled
systems, which are then lifted to become applicable in the context of labeled
systems, i.e., systems in which state transitions have semantic annotations. Finally,
we report on experimental results on efficiency of the proposed computations.

1 Introduction

Process models play a key role in the development of concurrent software systems as they
describe the functionality of a system by means of actions and their interdependencies
for the coordination of action execution. On the one hand, such models are used to
document system requirements, thereby guiding implementation efforts [1]. On the other
hand, process-aware information systems rely on process models as implementation
artifacts that are deployed in an execution environment, e.g., a workflow engine or a
service orchestration framework [2,3].

Process models are system models according to the classification of models of concur-
rency presented by Sassone et al. [4], i.e., they feature an explicit representation of states
and define how actions lead to state changes. This stands in contrast to behavior models
that define occurrences of actions over time while abstracting from states. As such, the
interpretation of a process model, e.g., a Labeled Transition System (LTS) [5], a Petri
net [6], or a UML activity diagram [7], under a certain semantics defines a behavior
model, e.g., a language over actions [8] or an event structure [9]. Semantics, in turn, are
broadly classified in two dimensions [4]. First, a semantics is concurrent or interleav-
ing, depending on whether the difference between concurrency and non-determinism is
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considered to be important. Second, a semantics is linear time or branching time, which
ignores or captures the moments of choice between the occurrences of different actions.

Given that process models are system models, analysis techniques are often grounded
on actions (system model level) and not on action occurrences (behavior model level).
However, recent work advocated to ground such analysis not directly in the procedural
description that is inherent to every system model, but rather to rely on a declarative
characterization of the behavior model that is induced by the process model under
a certain semantics, cf. [10] for details. Then, different sets of behavioral relations
are defined over pairs of actions (system model level), but capture characteristics, or
features in data mining terminology [11], of the occurrences of these actions (behavior
model level). Examples of these relations include different notions of exclusiveness,
concurrency, successorship, co-occurrence, or precedence. A specific example would
be a binary exclusiveness relation defined over actions represented by transition labels
in an LTS that holds if the language of the LTS does not comprise a word that contains
both labels. Such behavioral relations may be used to judge the consistency of process
models, conduct similarity search and querying in a process model repository, or to
realize change propagation between process models, cf. [12].

The benefit of relying on a declarative approach for the analysis of process models is
clearly witnessed by existing work. However, there is a plethora of specific definitions of
behavioral relations. Even for a single semantics and, thus, for a single behavior model
that acts as the interpretation of the process model, we observe a lack of understanding
of subtle differences in the definition of behavioral relations and their interplay. In this
paper, therefore, we provide a rigorous analysis of the spectrum of possible behavioral
relations. We base our analysis on two well-established formalisms for representing
system models and behavior models, i.e., Petri nets [6] and their interpretation in terms
of concurrent runs (or processes for short) [13]. We focus on four fundamental properties
that are of particular relevance for behavioral analysis: co-occurrence, conflict, causality,
and concurrency, jointly referred to in this paper as the 4C relations. For each of these
relations, we define a spectrum of relations over actions (transitions of Petri net systems
or transition labels) that are based on action occurrences (events of processes of Petri net
systems). As such, our work provides the foundation for selecting specific behavioral
relations for the analysis of a process model with a declarative characterization of the
behavior model induced under a certain semantics.

More specifically, this paper makes the following contributions:
○ It defines sets of co-occurrence, conflict, causality, and concurrency relations for

Petri nets and shows that these relations give rise to implication lattices.
○ It provides operationalizations of the proposed behavioral relations, i.e., it shows

how these relations can be computed.
○ It lifts the proposed behavioral relations, as well as the proposed computation

techniques, to labeled systems.
○ It presents an implementation and evaluation of the proposed computations.
The remainder of the paper is structured as follows. The next section illustrates the

application of behavioral relations with an example. Section 3 presents preliminaries
for our work. Section 4 defines a spectrum of fundamental behavioral relations. The
computation of these relations is addressed in Section 5. Subsequently, we extend the
class of considered models by lifting the relations, as well as their operationalizations, to
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Fig. 1: Two behavioral specifications given as Petri net systems

labeled systems. We evaluate the proposed computation methods in Section 7. Finally,
Section 8 reviews related work before Section 9 concludes the paper.

2 Motivating Example
We illustrate the application of fundamental behavioral relations for the analysis of
process models with two use cases, process model search and querying. Fig. 1 shows
two Petri net systems. Both models describe operations as they may be implemented in
a process-aware information system to realize the handling of a travel request. While we
define the formal semantics for Petri net systems later, here it suffices to see that both
models describe similar behaviors. For instance, in both models, action a is executed at
most once and always before action b, which may be repeated. However, the model in
Fig. 1(a) defines that actions a and b may be executed concurrently to action c, whereas
these actions are executed in a sequential order in Fig. 1(b).

Management of large process model collections requires effective search and querying
techniques [12]. Since process models specify behaviors, search and querying should not
be limited to the syntax of process models but should also consider semantics [14,15].
Behavioral relations have been used as the formal grounding for many search and
querying techniques. For instance, behavioral similarity of two models can be defined as
the Jaccard coefficient, i.e., the size of the intersection divided by the size of the union of
exclusiveness, order, and interleaving relations, defined for trace semantics [16]. Then,
the pair (b,c) would be in the intersection and union of order relations of both models
in Fig. 1 and, thus, account for similar behavior. However, the relations defined in [16]
do not distinguish concurrent and interleaved occurrences, so that the pair (b,c) would
also be in the intersection of the relations representing interleaving. Similar approaches
have been defined on other behavioral relations, cf. [17,18], raising the question of the
underlying spectrum of relations for similarity assessment.

Turning to querying of process models, APQL [14] has been presented as a rich query
language that supports 16 different forms of causal relations between actions, grounded
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in trace semantics. As an example, a relation may require that occurrences of b are
succeeded by occurrences of c immediately in some occurrence sequence, which is the
case in Fig. 1(a), but not in Fig. 1(b). Another relation captures that occurrences of b may
be succeeded by occurrences of c eventually, which holds true in Figs. 1(a) and 1(b).

These examples illustrate that the benefit of using a declarative characterization of
the behavior model induced by the process model under a certain semantics is clearly
recognized. However, the choice of behavioral relations to use in a certain setting is
taken in an ad-hoc manner. By precisely defining and exploring the spectrum of relations
that may qualify as a formal grounding, our work, thus, lays the foundation for a rigorous
application of behavioral relations in various use cases.

3 Preliminaries

This section introduces Petri nets, net systems, and processes of net systems.

3.1 Petri Nets and Net Systems

Petri nets are a well-established formalism for describing process models, i.e., system
models [6]. They allow for the rigorous definition of semantics of systems and reuse of
the well-developed mathematical theory for analysis of systems.

Definition 3.1 (Petri net)
A Petri net, or a net, is an ordered triple N ∶= (P,T,F), where P and T are finite disjoint
sets of places and transitions, respectively, and F ⊆ (P×T)∪(T ×P) is a flow relation. ⌟

An element x ∈P∪T is a node of N. A node x ∈P∪T is an input (an output) node of a node
y ∈P∪T iff (x,y) ∈F ((y,x) ∈F). By ●x (x●), x ∈P∪T , we denote the preset (the postset)
of x, i.e., the set of all input (output) nodes of x. For a set of nodes X ⊆P∪T , ●X ∶=⋃x∈X ●x
and X● ∶= ⋃x∈X x●. A node x ∈ P∪T is a source (a sink) node of N iff ●x = ∅ (x● = ∅).
Given a net N ∶= (P,T,F), by Min(N) we denote the set of all source nodes of N. For
convenience considerations, we require all nets to be T-restricted. A net N is T-restricted
iff the preset and postset of every transition is not empty, i.e., ∀t ∈ T ∶ ●t ≠ ∅ ≠ t●.

The execution semantics of Petri nets is proposed in terms of states and state transitions
and can be regarded as a ‘token game’. A state of a net is captured by the concept of a
marking, which specifies a distribution of tokens on the net’s places.

Definition 3.2 (Marking of a net) A marking, or a state, of a net N ∶= (P,T,F) is a
function M ∶ P→N0 that assigns to each place p ∈ P a number M(p) of tokens at p.1 ⌟

For M and M′ being two markings of N ∶= (P,T,F), it holds that M is covered by M′,
denoted by M ≤M′, iff M(p) ≤M′(p), for every p ∈ P. We shall often refer to a marking
M as to the multiset of places that contains M(p) copies of place p for every p ∈ P.
Additionally, we shall use the symbol ⊎ to denote the union of multisets.

A net system is a Petri net at a certain state/marking.

Definition 3.3 (Net system) A net system, or a system, is an ordered pair S ∶= (N,M),
where N is a net and M is a marking of N. ⌟

1 N0 denotes the set of all natural numbers including zero.
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In the graphical notation, places are usually visualized as circles, transitions are drawn
as rectangles, the flow relation is given as directed edges, and tokens are depicted as
black dots inside assigned places; refer to Fig. 1(a) for a visualization of a net system
with transitions t1 . . . t10, places p1 . . . p11, and a single token at place p1.

A transition can be enabled at a given marking of a net. An enabled transition can
occur. An occurrence of a transition leads to a new marking of the net.

Definition 3.4 (Semantics of a system) Let S ∶= (N,M), N ∶= (P,T,F), be a net system.
○ A transition t ∈ T is enabled in S, denoted by S[t⟩, iff every input place of t contains

at least one token, i.e., ∀p ∈ ●t ∶M(p) > 0.
○ If a transition t ∈ T is enabled in S, then t can occur, which leads to a step from

S to S′ ∶= (N,M′) via t, where M′ is a fresh marking such that M′(p) ∶= M(p)−
1F((p,t))+1F((t, p)), for every p ∈ P, i.e., transition t ‘consumes’ one token from
every input place of t and ‘produces’ one token for every output place of t.2 ⌟

The fact that there exists a step from S to S′ via a transition t is denoted by S[t⟩S′. A
marking M of a net N is a terminal marking iff there are no enabled transitions in (N,M).
A net system induces a set of its occurrence sequences/executions.

Definition 3.5 (Occurrence sequence, Execution) Let S0 ∶= (N,M0) be a net system.
○ A sequence of transitions σ ∶= t1 . . . tn, n ∈N0, of N is an occurrence sequence in S0

iff there exists a sequence of net systems S0,S1 . . . Sn, such that for every position i
in σ , 1 ≤ i ≤ n, it holds that Si−1[ti⟩Si; we say that σ leads from S0 to Sn.

○ An occurrence sequence σ in S0 is an execution iff σ leads from S0 to (N,M), where
M is a terminal marking in (N,M). ⌟

A marking M′ is a reachable marking in a net system S ∶= (N,M), N ∶= (P,T,F), iff there
exists an occurrence sequence σ in S that leads from S to (N,M′). By [S⟩, we denote
the set of all reachable markings in S. A marking M′ is a home marking in S iff it
is reachable from every reachable marking in S, i.e., ∀M′′ ∈ [S⟩ ∶ M′ ∈ [(N,M′′)⟩. S is
n-bounded, or bounded, iff there exists a number n ∈N0 such that for every reachable
marking M′ in S and for every place p ∈ P it holds that the number of tokens at p is at
most n, i.e., ∀M′ ∈ [S⟩∀p ∈ P ∶M′(p) ≤ n. It is easy to see that the set of all reachable
markings in a bounded net system is finite. Finally, a transition t ∈ T is dead in S iff there
does not exist a reachable marking in S that enables t.

3.2 Processes of Net Systems

Occurrence sequences and executions suit well when it comes to capturing orderings
of transition occurrences. This section presents processes of net systems [19]. One can
use processes to adequately represent causality and concurrency relations on transition
occurrences. A process of a net system is a net of a particular kind, called a causal net,
together with a mapping from nodes of the causal net to nodes of the net system.

Definition 3.6 (Causal net) A net N ∶= (B,E,G) is a causal net iff: (i) for every b ∈ B
it holds that ∣●b∣ ≤ 1 and ∣b● ∣ ≤ 1, and (ii) N is acyclic, i.e., G+ is irreflexive.3 ⌟

2 1F denotes the characteristic function of F on the set (P×T)∪(T ×P).
3 R+ denotes the transitive closure of binary relation R.
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Fig. 2: Two processes of the net system in Fig. 1(a)

Elements of B and E are called conditions and events of N, respectively. Two nodes x
and y of a causal net N ∶= (B,E,G) are causal, or x is a cause for y, iff (x,y) ∈G+. They
are concurrent, iff x ≠ y, (x,y) /∈G+, and (y,x) /∈G+. A cut of a causal net is a maximal
(with respect to set inclusion) set of its pairwise concurrent conditions.

Events of causal nets can be used to describe transition occurrences.

Definition 3.7 (Process, adapted from [19])
A process of a system S ∶= (N,M), N ∶= (P,T,F), is an ordered pair π ∶= (Nπ ,ρ), where
Nπ ∶= (B,E,G) is a causal net and ρ ∶ B∪E → P∪T is such that:
○ ρ(B) ⊆ P and ρ(E) ⊆ T , i.e., ρ preserves the nature of nodes,
○ Min(Nπ) is a cut and ∀p ∈ P ∶M(p) = ∣ρ−1(p)∩Min(Nπ)∣, i.e., π starts at M, and
○ for every event e ∈ E and for every place p ∈ P it holds that

1F((p,ρ(e))) = ∣ρ−1(p)∩●e ∣ and 1F((ρ(e), p)) = ∣ρ−1(p)∩e● ∣,
i.e., ρ respects the environment of transitions.4 ⌟

Given a process π , we shall often write Eπ and ρπ to denote the set of events E and the
mapping function ρ of π , respectively. We lift the aforementioned relations to processes
by defining ∣∣π and ↣π as the concurrency relation and the causality relation on nodes of
the causal net of π , respectively. We shall omit the subscripts where the context is clear.

Figs. 2(a) and 2(b) show processes π1 and π2 of the net system in Fig. 1(a), respectively.
When visualizing processes, conditions ci,c′i . . . refer to place pi, i.e., ρ(ci) = ρ(c′i) = pi.
Similarly, we assume events e j,e′j . . . to refer to transition t j, i.e., ρ(e j) = ρ(e′j) = t j. In
Fig. 2(a), for example, it holds that e2 ∣∣e4, e4↣ e′4, and e′4 ∣∣e9. Intuitively, the fact that
one event is a cause for another event in a process π of a system S tells us that transitions
which these events refer to can occur in order in occurrence sequences in S. The fact that
two events are concurrent in π signals that the respective transitions can be both enabled
at a reachable marking M, and can occur in any order starting from M.

Every event e ∈ Eπ describes an occurrence of transition ρπ(e). In [20], Jörg Desel
suggests how a process of a net system S relates to occurrence sequences in S. In
particular, every occurrence sequence in (Nπ ,M), where Nπ is the causal net of a process
(Nπ ,ρ) of S and M is a marking that puts one token at every source condition of Nπ and

4
ρ(X) ∶= {ρ(x)∣x ∈ X} and ρ

−1
(z) ∶= {y ∈Y ∣ρ(y) = z}, where X is a subset of ρ’s domain Y .
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no tokens elsewhere, describes via mapping ρ an occurrence sequence in S. For instance,
process π1 describes, among others, occurrence sequences t1 t4 t2 and t1 t2 t3 t4 t5 t6 t7 t8 t9 t4.

Given a net system S, by ΠS we denote the set of all processes (up to isomorphism)
that describe all executions in S. It is easy to see that the set ΠS, where S is the system in
Fig. 1(a), is infinite, where π1 /∈ΠS and π2 ∈ΠS. Indeed, process π2 in Fig. 2(b) describes,
among nine executions, execution t1 t2 t3 t4 t5 t6 t7 t8 t9 t3 t4 t5 t6 t10 in the system in Fig. 1(a).

4 Definition of the 4C Spectrum

This section explores the definition of fundamental behavioral relations along two dimen-
sions: occurrences of actions and their ordering. The first aspect is covered by different
notions of conflict and co-occurrence relations (Section 4.1). Given two actions of a
process model, these two relations relate to the presence or absence of joint occurrences
of the two actions in the behavior model under a certain semantics. The second aspect is
addressed by causality and concurrency relations (Section 4.2). Whenever there are joint
occurrences of two actions, their ordering can be described by means of these relations.

4.1 Conflict & Co-occurrence

We start our study of behavioral relations on transitions of systems with a close look
at the phenomena of conflict and co-occurrence. We noticed that every relation which
characterizes how transition occurrences correlate across executions in systems can be
captured in terms of two basic relations; one that checks if two transitions can both occur
in some execution in the system, and the other that explores whether a transition can
occur without some other transition.

Definition 4.1 (Basic conflict and co-occurrence)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x can conflict with y in S, denoted by x⇢S y, iff there exists an execution σ of S

such that x ∈ σ and y /∈ σ .
○ x and y can co-occur in S, denoted by x⥋S y, iff there exists an execution σ of S

such that x ∈ σ and y ∈ σ .5 ⌟

We shall often omit subscripts where the context is clear (for all the subsequently
proposed relations). For each transition x it holds that x⇢ x. If a transition x is dead, then
it holds that x⥋ x; otherwise x⥋ x.

p1

t1

t2

p2

t5

t3

p3

t4

t6

t7
p4

p5

Fig. 3: A net system

To give some examples we consider
the net system in Fig. 3. Here, among
other relations, it holds that t1⇢ t2, t2⇢ t5,
t2⇢ t6, t3⇢ t4, t1⥋ t2, t2⥋ t6, and t3⥋ t4.

Given a pair of transitions, one can
use basic conflict and basic co-occurrence
checks (refer to Definition 4.1) as atomic
propositions, or atoms, in propositional
logic formulas. These formulas can express ‘rich’ behavioral relations between pairs
of transitions of a system. For instance, given two transitions x and y for which it
holds that x can conflict with y, y can conflict with x, and x and y cannot co-occur,

5 Given a sequence σ , x ∈ σ denotes the fact that x is an element of σ .
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i.e., x⇢ y ∧ y⇢ x ∧ x⥋ y evaluates to true, one can conclude that occurrences of x and
y are mutually exclusive, or in conflict, in all executions in the system, e.g., transitions t1
and t2 are mutually exclusive in all executions in the system in Fig. 3.

Every well-formed propositional formula has an equivalent formula that is in dis-
junctive normal form (DNF), i.e., it is a disjunction of conjunctive clauses, where a
conjunctive clause is a conjunction of one or more literals6. We are interested in satis-
fiable formulas that are not tautologies, as formulas that are either false or true in all
interpretations are useless when it comes to characterizations of systems. A formula
in DNF is satisfiable iff at least one of its conjunctive clauses is satisfiable.7 Clearly, a
conjunctive clause cannot be satisfied if it contains both the atoms a and a. Thus, every
satisfiable conjunctive clause that is composed of checks from Definition 4.1 (for a fixed
pair of transitions) can never contain more than three literals.

A propositional formula is in perfect DNF if it is in DNF and each of its conjunctive
clauses contains exactly one occurrence of each of the atoms. Every well-formed propo-
sitional formula has a unique equivalent formula that is in perfect DNF. Indeed, every
elementary truth function over a set of atoms can be expressed as a formula in DNF
where each conjunctive clause corresponds to one of the rows in the truth table for which
the function is true. For each atom a that is made true in the row, the conjunctive clause
should contain a and for atom a that is made false in that row, the conjunctive clause
should contain a. For example, formula (x⇢ y ∧ y⇢ x ∧ x⥋ y) ∨ (x⇢ y ∧ y⇢ x ∧ x⥋ y)
is an equivalent perfect DNF of formula x⇢ y ∧ y⇢ x.

Since every formula that exploits basic conflict and basic co-occurrence checks be-
tween a fixed pair of transitions operates with at most three literals, it has a unique
equivalent formula in perfect 3DNF, i.e., a formula that is in DNF with each of its con-
junctive clauses composed of exactly three different literals. These formulas in 3DNF can
be seen as canonical forms of all propositional formulas over atoms induced by checks
specified in Definition 4.1. Next, we take a closer look at all possible conjunctive clauses
that can appear as parts of canonical formulas. These conjunctive clauses constitute
fundamental conflict and co-occurrence checks between a fixed pair of transitions of a
system, while disjunctions of these clauses allow one to obtain the ‘relaxed’ forms.

Definition 4.2 (Conflict and co-occurrence)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x and y co-occur in S, denoted by x↔S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y.
○ x and y are in conflict in S, denoted by x #S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y.
○ x requires y in S, denoted by x⇀S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y.
○ x and y are independent in S, denoted by x⇌S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y. ⌟

It is easy to check that transitions t3 and t4 co-occur in the system in Fig. 3, i.e., it holds
that t3↔ t4, t1 and t2 are in conflict, i.e., t1 # t2, t5 requires t7, i.e., t5⇀ t7, and t3 and t5
are independent, i.e., t3 ⇌ t5. Note that ⇀S is asymmetric, whereas all other relations
in Definition 4.2 are symmetric. In a system that is free from dead transitions every
pair of transitions is in exactly one of the relations from Definition 4.2. Clearly, the
relations in Definition 4.2 are disjoint. The fact that in the absence of dead transitions

6 A literal is an atomic proposition or its negation.
7 A formula is satisfiable if it is possible to find an interpretation that makes the formula true.
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other conjunctive clauses (those not put into use in Definition 4.2) over the basic conflict
and co-occurrence relations never evaluate to true is justified by the next proposition.

Proposition 4.3 (Basic conflict and co-occurrence) If S ∶= (N,M), N ∶= (P,T,F), is a
system without dead transitions, and x,y ∈ T are transitions of N, then it holds that:
(a) x⇢S y implies x⥋S y, and (b) x⥋S y implies x⇢S y and y⇢S x. ⌟

The proof of Proposition 4.3 is immediate. If x cannot conflict with y, i.e., x⇢S y, then x
and y can co-occur; otherwise x is a dead transition. Similarly, if x and y cannot co-occur,
i.e., x⥋S y, then there exist executions in S in which occurrences of x and y are mutually
exclusive; otherwise either x, or y, or both x and y are dead transitions.

Next, we explore the remaining conjunctive clauses. These can relate dead transitions.

Definition 4.4 (Never (co-)occur)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x and y never occur in S, denoted by x ∣S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y.
○ x but not y occurs in S, denoted by x ⊢S y, iff x⇢S y ∧ y⇢S x ∧ x⥋S y. ⌟

Indeed, in the general case, it is possible that either both transitions x and y are dead,
in which case it holds that x ∣ y, or one of the two transitions is dead, in which case it
holds that x ⊢ y or y ⊢ x. Definitions 4.2 and 4.4 propose ‘strong’ relations, i.e., every
pair of transitions of a system is exactly in one of the proposed relations (they partition
the Cartesian product of transitions). If one is interested in ‘relaxed’ forms of conflicts
and co-occurrences, one can rely on the full spectrum of those, see the next definition.

Definition 4.5 (Spectrum of conflict and co-occurrence relations)
Let S ∶= (N,M), N ∶= (P,T,F), be a system, let x,y ∈ T be transitions of N, and let Ω be
a propositional formula on atomic propositions x⇢S y, y⇢S x, and x⥋S y.
○ Ω specifies a conflict relation between x and y iff each conjunctive clause of the

perfect 3DNF of Ω contains either x⇢S y or y⇢S x among its literals.
○ Ω specifies a co-occurrence relation between x and y iff each conjunctive clause of

the perfect 3DNF of Ω contains x⥋S y as a literal. ⌟

Given a system S, by }S and |S, we shall denote the sets of all, as per Definition 4.5,
conflict and co-occurrence relations of S, respectively. For example, x↔ y ∨ x⇀ y
specifies a co-occurrence check between transitions x and y. Given two transitions x
and y, there exist four conjunctive clauses (of the above discussed form) that contain
literal x ⥋ y; these are (i) x ⇢ y ∧ y ⇢ x ∧ x ⥋ y, (ii) x⇢ y ∧ y ⇢ x ∧ x ⥋ y, (iii)
x⇢ y ∧ y⇢ x ∧ x⥋ y, and (iv) x⇢ y ∧ y⇢ x ∧ x⥋ y. Thus, there are in total 24 −1,
i.e., fifteen, distinct co-occurrence relations; each co-occurrence relation is either a single,
or a disjunction of several, above proposed conjunctive clauses. By applying the same
rationale, one can conclude that there are 63 distinct conflict relations.

4.2 Causality & Concurrency

This section looks into causality and concurrency phenomena. Similarly to the co-
occurrence relations from Section 4.1, which report whether or not two actions can
both occur in some execution in a system, causality and concurrency study situations
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when two actions occur in the same execution. However, causality and concurrency
additionally enforce orderings on action occurrences.

Causality and concurrency are well-studied concepts in the context of behavior mod-
els [13,9,19]. These models focus on patterns of occurrences of actions, i.e., every
occurrence of an action within a behavior model is supported with a dedicated modeling
construct. Thus, there can exist several events in a process of a system which describe
different occurrences of the same transition of the system, see the process in Fig. 2(b)
and the corresponding net system in Fig. 1(a). This modeling approach has a simple
characterization in terms of causality and concurrency relations on events, i.e., every two
distinct events from a causal net that underpins the process are either causal or concurrent.
Two concurrent events can be enabled at the same time, i.e., the corresponding actions
can be executed simultaneously, while two causal events indicate the presence of an
order, i.e., one action is a prerequisite of the other. In fact, both representations, i.e., (i) a
process, and (ii) its causality and concurrency relations, are equivalent; given a causal
net one can construct its causality and concurrency relations, and vice versa [9].

In what follows, we systematically discover causality and concurrency relations (of
different ‘strengths’) by projecting the corresponding phenomena from action occur-
rences of behavior models into actions of system models, i.e., from events of processes
into transitions of net systems. This way a comprehensive classification of causality
and concurrency relations for system models is obtained. Given two transitions x and
y of a system, the classification is founded on three ‘dimensions’. Intuitively, these
dimensions correspond to: (i) whether a relation holds in some or all processes of a net
system, (ii) whether a relation holds for one or all occurrences of x, and (iii) whether
a relation holds for one or all occurrences of y. Before proceeding, for convenience
considerations, we define a filter that selects those processes that describe occurrences of
x and y, i.e., ∆S(x,y) ∶= {π ∈ΠS ∣ ∃ e1 ∈Eπ ∃ e2 ∈Eπ ∶ e1 ≠ e2 ∧ ρπ(e1) = x ∧ ρπ(e2) = y}.
The constraint e1 ≠ e2 is introduced to allow excluding those processes from ∆S(x,x)
that contain only one event that describes an occurrence of x. Thus, ∆S(x,y) contains
processes that are of interest when checking causality and concurrency. Note that the
causality and concurrency relations on events of a causal net are irreflexive. Next, we pro-
pose concurrency checks between transitions x and y that imply checks in all processes
that describe occurrences of x and y to obtain total relations.

Definition 4.6 (Total concurrency)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x and y are total (mutual) concurrent in S, denoted by x ∣∣∀∀∀S y, iff:
∀π ∈ ∆S(x,y) ∀e1 ∈ Eπ ∀e2 ∈ Eπ ∶ (e1 ≠ e2 ∧ ρπ(e1) = x ∧ ρπ(e2) = y)⇒ e1 ∣∣π e2.

○ x is total functional concurrent for y in S, denoted by x ∣∣∀∀∃S y, iff:
∀π ∈ ∆S(x,y) ∀e1 ∈ Eπ ∃e2 ∈ Eπ ∶ ρπ(e1) = x⇒(ρπ(e2) = y ∧ e1 ∣∣π e2).

○ x is total dominant concurrent for y in S, denoted by x ∣∣∀∃∀S y, iff:
∀π ∈ ∆S(x,y) ∃e1 ∈ Eπ ∀e2 ∈ Eπ ∶ ρπ(e1) = x ∧ ((ρπ(e2) = y ∧ e1 ≠ e2)⇒ e1 ∣∣π e2).

○ x and y are total existential concurrent in S, denoted by x ∣∣∀∃∃S y, iff:
∀π ∈ ∆S(x,y) ∃e1 ∈ Eπ ∃e2 ∈ Eπ ∶ ρπ(e1) = x ∧ ρπ(e2) = y ∧ e1 ∣∣π e2. ⌟

Instead of checking concurrency patterns in all processes where two transitions co-occur,
one can ask if these patterns hold in at least one process. Such an intent results in the
next definition of existential concurrent relations.
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Definition 4.7 (Existential concurrency)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x and y are existential total concurrent in S, denoted by x ∣∣∃∀∀S y, iff:
∃π ∈ ∆S(x,y) ∀e1 ∈ Eπ ∀e2 ∈ Eπ ∶ (e1 ≠ e2 ∧ ρπ(e1) = x ∧ ρπ(e2) = y)⇒ e1 ∣∣π e2.

○ x is existential functional concurrent for y in S, denoted by x ∣∣∃∀∃S y, iff:
∃π ∈ ∆S(x,y) ∀e1 ∈ Eπ ∃e2 ∈ Eπ ∶ ρπ(e1) = x⇒(ρπ(e2) = y ∧ e1 ∣∣π e2).

○ x is existential dominant concurrent for y in S, denoted by x ∣∣∃∃∀S y, iff:
∃π ∈ ∆S(x,y) ∃e1 ∈ Eπ ∀e2 ∈ Eπ ∶ ρπ(e1) = x ∧ ((ρπ(e2) = y ∧ e1 ≠ e2)⇒ e1 ∣∣π e2).

○ x and y are existential (mutual) concurrent in S, denoted by x ∣∣∃∃∃S y, iff:
∃π ∈ ∆S(x,y) ∃e1 ∈ Eπ ∃e2 ∈ Eπ ∶ ρπ(e1) = x ∧ ρπ(e2) = y ∧ e1 ∣∣π e2. ⌟

Similarly, one can talk about causality relations of different strengths. These relations
can be trivially obtained by replacing all the concurrent checks e1 ∣∣π e2 in Definitions 4.6
and 4.7 with the causal checks e1 ↣π e2.
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Fig. 4: The lattice of causality/concurrency

For instance, the total (mutual) causal
check between transitions x and y verifies
if for every process π of the respective
system and for every two distinct events
e1 and e2 of π it holds that if e1 describes
an occurrence of x and e2 describes an
occurrence of y, then e1 is a cause for
e2, i.e., it holds that e1 ↣π e2. The con-
currency relations from Definitions 4.6
and 4.7 give rise to a lattice induced by
logical implications; the same holds for
the corresponding causality relations. It is
easy to see that x ∣∣∀∀∀ y implies x ∣∣∀∀∃ y.
Clearly, if in every process that describes
occurrences of x and y it holds that every occurrence of x is concurrent with some
occurrence of y, and vice versa, then in each of these processes it also trivially holds that
for every occurrence of x one can find a corresponding concurrent occurrence of y. Fig. 4
summarizes all the implications; transitive implications are not visualized. Here, every
arrow specifies a logical implication between relations encoded in its endpoints, e.g., the
implication from the above example is highlighted with a thicker arrow in the figure.

Finally, we define the spectrum of all causal and concurrent relations where each
relation stems from a particular combination of co-occurrence and causal/concurrent
patterns of action occurrences. Let Φ ∶= {∀∀∀,∀∀∃,∀∃∀,∀∃∃,∃∀∀,∃∀∃,∃∃∀,∃∃∃}.

Definition 4.8 (Spectrum of causality and concurrency relations)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x,y ∈ T be transitions of N.
○ x and y are causal, denoted by x ↣φ

S,⟐ y, iff it holds that
(x ⟐S y) ∧ (x ↣φ

S y), where ⟐S ∈ |S and φ ∈Φ .
○ x and y are concurrent, denoted by x ∣∣φS,⟐ y, iff it holds that

(x ⟐S y) ∧ (x ∣∣φS y), where ⟐S ∈ |S and φ ∈Φ . ⌟
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It is easy to see that Definition 4.8 can be used to induce 15×8 = 120 distinct causal
relations and the same number of concurrent relations on transitions of net systems.
Definitions 4.5 and 4.8 jointly specify the 4C spectrum of behavioral relations.

Coming back to our motivating example in Section 2, one can clearly differentiate
systems in Fig. 1 by using the above proposed behavioral relations on transitions. For
instance, in Fig. 1(a), one can verify that the only transition with label b and the only
transition with label c are existential causal, existential total concurrent, as well as total
functional concurrent. In the system in Fig. 1(b), it also holds that the only transition
with label b and the only transition with label c are existential causal. However, these
transitions are not concurrent as per Definitions 4.6 and 4.7.

a b c d e

a ⥋ ↣∀∀∀ ↣∃∀∃ ∣∣∃∀∀
∀∀∃

↣∀∀∀ ↣∀∀∀

b ⥋ ↣∀∃∃ ↣∃∃∃ ∣∣∃∀∀
∀∀∃

↣∃∀∀∀∀∃
∀∃∀

↣∀∃∀

c ∣∣∃∀∀
∀∃∀

↣∃∃∃ ∣∣∃∀∀
∀∀∃

↣∀∃∃ ↣∃∀∀∀∀∃
∀∃∀

↣∀∃∀ ∣∣∃∃∀
∀∃∃

d ⥋ ↣∃∃∃ ↣∃∃∃ ↣∀∃∃ ↣∀∃∀
e ⥋ ↣∀∀∃ ↣∃∃∃ ∣∣∀∀∃ ↣∀∀∃ ↣∀∃∃

Table 1: Behavioral relations in Fig. 1(a)

a b c d e

a ⥋ ↣∀∀∀ ↣∀∀∀ ↣∀∀∀ ↣∀∀∀

b ⥋ ↣∀∃∃ ↣∃∃∃ ↣∃∀∀∀∀∃
∀∃∀

↣∀∃∀

c ⥋ ↣∃∀∀∀∀∃
∀∃∀

↣∀∃∃ ↣∃∀∀∀∀∃
∀∃∀

↣∀∃∀

d ⥋ ↣∃∃∃ ↣∃∃∃ ↣∀∃∃ ↣∀∃∀
e ⥋ ↣∀∀∃ ↣∀∀∃ ↣∀∀∃ ↣∀∃∃

Table 2: Beh. relations in Fig. 1(b)

Tables 1 and 2 summarize all the fundamental relations for the systems in Fig. 1. Note
that only strong relations are proposed, where a relation is classified as strong iff it is not
implied by any other relation. Tables 1 and 2 do not suggest can conflict relations. For
both systems in Fig. 1 it trivially holds that a, b, c, and d can conflict with e.

5 Computation of Behavioral Relations

This section addresses the problem of computing behavioral relations.

5.1 Conflict & Co-occurrence

Section 4.1 introduced a spectrum of conflict and co-occurrence relations. Despite the
large number of relations that aim at recognizing small differences between patterns of
action occurrences, all the relations are founded on two basic checks from Definition 4.1.
In what follows, we show how one can reduce these basic checks to the reachability
problem [8]. To this end, we rely on the next transformation of net systems.

Definition 5.1 (Transition guarding)
Let S ∶= (N,M), N ∶= (P,T,F), be a system and let x ∈ T be one of its transitions. An
injection of a guard for x in S results in a system S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′), where:
○ P′ ∶= P∪{p, p′}, T ′ ∶= T ∪{x′}, where p, p′,x′, are fresh nodes in N, M′ ∶=M⊎{p},
○ F ′ ∶= F ∪{(y,x′) ∣ y ∈ ●x}∪{(x′,y) ∣ y ∈ x●}∪{(p,x′),(x′, p′),(p′,x),(x, p′)}. ⌟

We say that fresh transition x′ is the guard for x, whereas fresh places p and p′ are the
guard and the control place for x, respectively. It is easy to see that different orderings
of injections of guards for all transitions from some set of transitions lead to the same
system. Finally, computations of conflicts and co-occurrences are due to the next result.
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Fig. 5: Visualizations of: (a) the proof of Proposition 5.2, and (b) the proof of Proposition 5.6

Proposition 5.2 (Basic conflict and co-occurrence check)
Let S ∶= (N,M), N ∶= (P,T,F), be a net system with a unique reachable terminal marking
Mt . Let x,y ∈ T , x ≠ y, be transitions of N. Let S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′), be a net
system obtained via injections of guards for x and y, where p′ ∈ P′ and q′ ∈ P′ are the
control places for x and y, respectively, and q ∈ P′ is the guard place for y.
1. x can conflict with y in S, i.e., x⇢S y, iff Mt ⊎{p′,q} is a reachable marking in S′.
2. x and y can co-occur in S, i.e., x⥋S y, iff Mt⊎{p′,q′} is a reachable marking in S′. ⌟

Fig. 5(a) visualizes the construction of the proof of Proposition 5.2. In the figure,
transitions x′ and y′ are the guards for transitions x and y, respectively, whereas p,q and
p′,q′ are the corresponding guard and control places. The box with the dashed borderline
demarcates boundaries of the original (not augmented) net system S. It holds that in
every occurrence sequence in the augmented system S′ transition x′ can occur at most
once (instead of the first occurrence of transition x in S). Indeed, the preset of x′ consists
of the preset of x and one additional place p, which is marked in S′. An occurrence of
x′ implements the effect of the occurrence of x, i.e., the postset of x′ contains that of x.
Additionally, an occurrence of x′ marks place p′ that allows subsequent occurrences of
x. The same principles apply to occurrences of transitions y and y′ in S′. Thus, it appears
that every execution σ in S can be trivially transformed into an execution σ

′ in S′ by
replacing the first occurrences of x and y with those of x′ and y′, respectively. Moreover,
the presence and absence of transitions x and y in σ is clearly witnessed by the presence
and absence of tokens at places p′ and q′, respectively, in a marking that is reachable via
σ
′ in S′. The above proposed rationale justifies both statements in Proposition 5.2.
Note that the reachability problem, which given a net system S and a marking M

consists of deciding if M is a reachable marking in S, is decidable [21,22].

5.2 Causality & Concurrency

This section proposes computations of causality and concurrency relations. To demon-
strate feasibility, this section addresses the computation of two extreme cases (as per
Section 4). We start by showing how to compute existential concurrency.

Proposition 5.3 (Existential concurrency check)
Let S ∶= (N,M), N ∶= (P,T,F), be a net system with a unique reachable terminal marking
Mt , such that Mt is a home marking in S. Let x,y ∈ T be transitions of N. Transitions x
and y are existential concurrent in S, i.e., x ∣∣∃∃∃S y, iff there exists a reachable marking
M′ in S such that ●x⊎●y is covered by M′, i.e., ∃M′ ∈ [S⟩ ∶ ●x⊎●y ≤M′. ⌟
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The statement in Proposition 5.3 follows immediately from the process construction
principles described in [19,20]; refer to the proof of Theorem 3.6 in [19]. Note that
the fact that Mt is a home marking ensures that every process of S that contains two
concurrent events that refer to transitions x and y can indeed be extended to a process
that describes an execution in S. Next, we propose a solution for checking total causality.

Proposition 5.4 (Total causality check) Let S ∶= (N,M), N ∶= (P,T,F), be a net system
with a unique reachable terminal marking Mt , such that Mt is a home marking in S. Let
x,y ∈ T be transitions of N. Transitions x and y are total causal in S, i.e., x ↣∀∀∀S y, iff for
every occurrence sequence σ ∶= t1 . . .tn, n ∈N0, in S and for every two positions i and j
in σ , 1 ≤ i, j ≤ n, i ≠ j, such that ti = x and t j = y it holds that i < j. ⌟

Again, the existence of a reachable terminal marking Mt , which is a home marking,
ensures that every occurrence sequence of interest can be extended to an execution. It
is immediate that if x and y are total causal then in every occurrence sequence y can
never be observed before x. As for the converse statement, assume that there exists an
occurrence sequence σ in which y precedes x and it holds that x ↣∀∀∀S y. Then, it also
holds that x ∣∣π y or y↣π x, where π is a process induced by σ , refer to [20] for details,
which leads to a contradiction. Thus, one can verify total causality between x and y by
testing for the absence of an occurrence sequence in which y precedes x. To this end, we
suggest to rely on the next transformation of net systems.

Definition 5.5 (Precedence test) Let S ∶= (N,M), N ∶= (P,T,F), be a system and let
x,y ∈ T , be its transitions. An injection of a precedence test for x before y in S results in a
system S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′), where:
○ P′ ∶= P∪{p,q,r}, T ′ ∶= T ∪{x′,y′}, where p,q,r and x′,y′ are fresh nodes in N,
○ F ′ ∶= F ∪{(z,x′) ∣ z ∈ ●x}∪ {(x′,z) ∣ z ∈ x●}∪ {(z,y′) ∣ z ∈ ●y}∪ {(y′,z) ∣ z ∈ y●}∪

{(p,x′),(x′,q),(q,y′),(y′,r)}, and M′ ∶=M⊎{p}. ⌟

We say that the fresh place r is the precedence control place for x before y. Given
transitions x and y of a net system, the injection of a precedence test for x before y can
be used to check if x can precede y in some occurrence sequence in the net system.

Proposition 5.6 (Precedence test) Let S ∶= (N,M), N ∶= (P,T,F), be a net system and
let x,y ∈ T be transitions of N. Let S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′), be a net system
obtained via injection of a precedence test for x before y, where r ∈ P′ is the precedence
control place for x before y. There exists an occurrence sequence σ ∶= t1 . . .tn, n > 1,
where ti ∈ T , i ∈ 1..n, in S such that an occurrence of x precedes an occurrence of y in σ ,
i.e., there exist positions i and j in σ , 1 ≤ i < j ≤ n, such that ti = x and t j = y, iff there exists
a reachable marking M′ in S′ such that {r} is covered by M′, i.e., ∃M′ ∈ [S′⟩ ∶ {r} ≤M′. ⌟

An injection of a precedence test is visualized in Fig. 5(b). Clearly, for every occurrence
sequence in the augmented net system which leads to a marking that covers the prece-
dence control place r it holds that transition x′ precedes transition y′. As transition x and
y can always occur instead of x′ and y′, both in the original and in the augmented net
system, it holds that there exists an occurrence sequence in the original net system in
which x precedes y, refer to the discussion in Section 5.1 for the intuition.

Note that the covering problem, which given a net system S and a marking M consists
of deciding if there exists a reachable marking M′ in S such that M ≤ M′, i.e., M is
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covered by M′, is decidable [23]. Moreover, the home state problem, which given a net
system S and a reachable marking M in S consists of deciding if M is a home marking in
S, is decidable [24]. Finally, one can often ensure the existence of a unique reachable
terminal marking in a given net system, e.g., if the system is bounded.

6 The 4C Spectrum for Labeled Net Systems
So far we discussed behavioral relations for systems in which actions are represented by
transitions. We now turn to labeled systems that represent actions by (transition) labels,
for which we first recall basic notions. We then lift the relations of the 4C spectrum to
labels and show how their operationalizations are traced back to the unlabeled case.

6.1 Labeled Net Systems
In the context of process models, the motivation for labeled net systems is twofold. First,
it is often convenient to distinguish between observable and silent transitions, separating
actions that carry semantics in the application domain from those that have no domain
interpretation. Second, one may wish to assign a certain semantics in the application
domain to different transitions. Note that the models in Fig. 1 are, in fact, labeled systems,
although so far the labels have not been considered in our investigations. Fig. 6 depicts
another labeled system, in which two transitions are assigned the same label.

We briefly recall notions and notations for labeled net systems as follows.

Definition 6.1 (Labeled net) A labeled net is an ordered tuple N ∶= (P,T,F,T ,λ),
where (P,T,F) is a net, T is a set of labels, where τ ∈ T is a special label, and λ ∶ T →T
is a function that assigns to each transition in T a label in T . ⌟
If λ(t) ≠ τ , t ∈ T , then t is observable; otherwise, t is silent. Labeling directly extends to
systems, i.e., a labeled net system, or a labeled system, is an ordered pair S ∶= (N,M),
where N is a labeled net and M is a marking of N.

In the graphical notation, a label of a transition is shown next to the transition rectangle
with its short form shown inside of the rectangle, whereas silent transitions are visualized
as empty rectangles. For instance, two transitions in the system in Fig. 6 ‘wear’ label
“Get Budget Approval”, which we also refer to via its short form b. Note that Fig. 3
visualizes a regular, i.e., unlabeled, net system.

For a labeled system S ∶= (N,M), N ∶= (P,T,F,T ,λ), any occurrence sequence σ ∶=
t1 . . .tn, n ∈N0, of N can be interpreted as a sequence of observable labels. Let Θ(σ ,k) ∶=
∣{ti ∈ σ ∣ i ≤ k∧λ(ti) = τ}∣ be the number of silent transitions of σ up to and including
position k. Then, the observable sequence induced by σ , denoted by λ(σ) ∶= λ1 . . .λm,
m ≤ n, is such that λi ∶= λ(t j), j = i+Θ(σ , j), for 0 ≤ i ≤m, and n =m+Θ(σ ,n).

In the same vein, processes of a labeled system can be interpreted in terms of transition
labels. That is, given a process π ∶= (Nπ ,ρ), Nπ ∶= (B,E,G), of a labeled net system
S ∶= (N,M), N ∶= (P,T,F,T ,λ), each event e ∈ E is not only related to a transition
ρ(e) ∈ T , but also to a label (λ ○ρ)(e) ∈ T .

6.2 Relations over Transition Labels

Conflict & Co-occurrence. All the proposed conflict and co-occurrence relations from
Section 4.1 are based on the binary can conflict and can co-occur relations that are
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Fig. 6: A behavioral specification given as a labeled Petri net system

defined over transitions, see Definition 4.1. Once any occurrence sequence and, thus,
any execution in a labeled system S ∶= (N,M), N ∶= (P,T,F,T ,λ), is interpreted as a
sequence of observable labels, both relations can be naturally lifted to labels. Label λx
can conflict with label λy in S, λx,λy ∈ T ∖{τ}, denoted by λx⇢λ ,S λy, iff there exists an
execution σ of S such that λx ∈ λ(σ) and λy /∈ λ(σ). Labels λx and λy can co-occur in
S, denoted by λx ⥋λ ,S λy, iff there exists an execution σ in S such that λx ∈ λ(σ) and
λy ∈ λ(σ). E.g., for the net system in Fig. 6 it holds that c⇢λ e, e⇢λ c, and c⥋λ e.

Causality & Concurrency. The causality and concurrency relations from Section 4.2
test for processes that contain events related to certain transitions. For the case of
labeled systems, these tests can refer to events that relate to certain observable labels.
We exemplify how the relations are lifted with the total (mutual) concurrency relation.
For a labeled system S ∶= (N,M), N ∶= (P,T,F,T ,λ) and two labels λx,λy ∈ T ∖{τ}, let
∆λ ,S(λx,λy)∶={π ∈ΠS ∣ ∃e1 ∈Eπ ∃e2 ∈Eπ ∶ e1≠e2∧(λ ○ρπ)(e1) =λx∧(λ ○ρπ)(e2) =λy}
be the set of processes containing events of interest. Then, two labels λx and λy are total
(mutual) concurrent in S, denoted by λx ∣∣∀∀∀

λ ,S λy, iff ∀π ∈ ∆λ ,S(λx,λy)∀e1 ∈ Eπ∀e2 ∈ Eπ ∶
(e1 ≠ e2 ∧ (λ ○ρπ)(e1) = λx ∧ (λ ○ρπ)(e2) = λy)⇒ e1 ∣∣π e2. For example, for the net
system in Fig. 6 it holds that c ∣∣∀∀∃

λ
b and c↣∃∀∃

λ
b.

6.3 Computation
Computation of the relations defined over labels can be traced back to the computation
of the relations defined over transitions, as introduced in Section 5. The idea behind our
approach is to implement label unification, such that every occurrence of the same label
is manifested in the occurrence of a specific (possibly newly introduced) transition. To
this end, we perform structural transformations of labeled net systems.

Definition 6.2 (Label unification) Let S ∶= (N,M), N ∶= (P,T,F,T ,λ), be a labeled net
system and let λx ∈ T be a label. Let Tλx ∶= {t ∈ T ∣λ(t) = λx} be the set of all transitions
of N labeled with λx. A label unification of λx in S results in a labeled net system S′,
such that: (i) if λx = τ or ∣Tλx ∣ ≤ 1 then S′ ∶= S, i.e., the net system is not changed, and (ii)
if λx ≠ τ and ∣Tλx ∣ > 1 then S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′,T ,λ ′), where:
○ P′ ∶= P∪{∗p, p∗}∪ ⋃t∈Tλx

{pt , p̂t}, T ′ ∶= T ∪{t̂}∪ ⋃t∈Tλx
{∗t,t∗}, such that

({∗p, p∗, t̂}∪ ⋃t∈Tλx
{pt , p̂t ,∗t,t∗})∩(P∪T) = ∅,

○ F ′ ∶= F ∪{(∗p, t̂),(t̂, p∗)}∪⋃t∈Tλx
{(p,∗t)∣ p ∈ ●t}∪⋃t∈Tλx

{(t∗, p)∣ p ∈ t●}∪
⋃t∈Tλx

{( p̂t ,t),(∗t, pt),(pt ,t∗),(∗t,∗p),(p∗,t∗)},
○ λ

′(t) ∶= λ(t), for every t ∈ T , λ
′(t̂) ∶= λx, λ

′(∗t) ∶= λ
′(t∗) ∶= τ , for every t ∈ Tλx , and

○ M′(p)∶=M(p), for every p ∈ P, M′(∗p)∶=M′(p∗)∶=0, M′(pt)∶=M′( p̂t)∶=0, for every
t ∈ Tλx . ⌟
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Fig. 7: The system of Fig. 6 after applying unification of label b

If λx ≠ τ and ∣Tλx ∣ > 1, we say that transition t̂ is the solitary transition for label λx in
S′. Additionally, we say that transition t is the solitary transition for label λx in S′ if
λx ≠ τ and Tλx = {t}. If λx ≠ τ and ∣Tλx ∣ > 1, all transitions in Tλx are dead in S′; since
places p̂t1 to p̂tn have empty presets and are not marked in M′. Thus, given a label λx,
the solitary transition for λx (if such a transition exists) is the only transition with label
λx that may appear in an occurrence sequence in S′. If λx ≠ τ , ∣Tλx ∣ > 1, and t ∈ T is such
that λ(t) = λx, we say that ∗t and t∗ are the presolitary and the postsolitary transition of
t for λx, respectively. For the example net system shown in Fig. 6, the result of applying
unification of label b is illustrated in Fig. 7. It is easy to see that all applications of the
same set of unification operations (in different orders) result in the same system.

In what follows, we argue that an original net system and its augmented version that
is obtained via unification of every label in a given set of labels induce – from the point
of view of an external observer – equivalent behaviors. In order to facilitate subsequent
discussions, we rely on the next auxiliary definition.

Definition 6.3 (Labeled elementary event structure)
A labeled elementary event structure is an ordered tuple E ∶= (E,≺,T ,λ), where E is a
set of events, ≺ is a partial order over E, called the causality relation, T is a set of labels,
and λ ∶ E →T is a function that assigns to each event in E a label in T . ⌟
The ordered pair (E,≺) is a partially ordered set of events, also known as an elementary
event structure. In [9], the authors show that elementary event structures are alternative
representations of causal nets and, thus, of processes of net systems [19]. Consequently,
every labeled elementary event structure is a partially ordered set of labeled events that
can be used to encode essential information about observable transition occurrences.

Let π ∶= (Nπ ,ρ), Nπ ∶= (B,E,G), be a process of a labeled system S ∶= (N,M), N ∶=
(P,T,F,T ,λ), and let E′ ∶= {e ∈ E ∣ (λ ○ρ)(e) ≠ τ} be the set of events of Nπ that
correspond to observable transitions of N. Then, E[π] ∶= (E,↣π ∣E ,T ,λ ○ (ρ ∣E)) is
the labeled elementary event structure induced by π , and O[E[π]] ∶= (E′,↣π ∣E′ ,T ∖
{τ},λ ○(ρ ∣E′)) is the observable elementary event structure induced by E[π]. Note that
similar transformations are proposed in [9,25]; for instance, in [25], the authors propose
the λ -abstraction of π . Given a process π , the observable elementary event structure
O[E[π]] describes all occurrences of observable transitions that are also captured in π ,
as well as the causality and the concurrency relations on the corresponding events.

Intuitively, two event structures describe the same observable behavior if they are
order-isomorphic, refer to [25] for details.
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Definition 6.4 (Order-isomorphism) LetO1 ∶= (E1,≺1,T ,λ1) andO2 ∶= (E2,≺2,T ,λ2)
be two observable elementary event structures (both with labels in T ). Then, O1 and O2
are order-isomorphic, denoted by O1 ≅O2, iff there exists a bijection β ∶ E1→ E2, such
that : (i) ∀e ∈ E1 ∶ λ1(e) = (λ2 ○β)(e) and (ii) ∀e,e′ ∈ E1 ∶ e ≺1 e′⇔ β(e) ≺2 β(e′). ⌟
Using the notion of observable elementary event structures, we show that, indeed, label
unification does not change the behavior of a net system.

Lemma 6.5 (Equivalence of observable behaviors)
Let S ∶= (N,M), N ∶= (P,T,F,T ,λ), and S′ be labeled net systems, where S′ is obtained
from S via label unification of every label in T ′ ⊆ T . For every process π of S there exists
a process π

′ of S′, such that O[E[π]] ≅ O[E[π ′]], and vice versa. ⌟

Proof. (Sketch) Let S′ ∶= (N′,M′), N′ ∶= (P′,T ′,F ′,T ,λ ′). Let π ∶= (Nπ ,ρ), Nπ ∶=
(B,E,G), be a process of S, and let E[π] ∶= (E,≺,T ,η) be the labeled elementary
event structure induced by π . We prove the statement by induction on the structure of
E[π]. It is easy to see that the empty processes of S and S′, i.e., processes without a single
event, induce order-isomorphic observable elementary event structures. By the induction
hypothesis, there exists a process π

′ of S′ such that O[E[π ′]] is order-isomorphic with
O[(E′,≺ ∣E′ ,T ,η ∣E′)], where E′ is a left-closed subset of E, i.e., e ∈E′ and e′ ≺ e, e′ ∈E,
implies e′ ∈ E′. Let d ∈ E be an event such that d /∈ E′ and E′′ ∶= E′∪{d} is a left-closed
subset of E. Next, we construct a process π

∗ from π
′ by appending to π

′ a fresh event,
refer to [19] for details. When appending a fresh event that refers to transition t, we also
append conditions that map to places in the postset of t. Additionally, the flow relation of
the causal net of the process under construction is completed to respect the environment
of t. We distinguish the following two cases:
(i) (λ ○ρ)(d) = τ or ∣{t ∈ T ∣λ(t) = (λ ○ρ)(d)}∣ = 1 or (λ ○ρ)(d) /∈ T ′.

We construct π
∗ by appending a fresh event f to π

′ that maps to transition ρ(d).
(ii) Otherwise, we construct π

∗ by appending three fresh events f , f ′, and f ′′ to π
′ such

that f maps to the solitary transition for label (λ ○ρ)(d), whereas f ′ and f ′′ map
to the presolitary and the postsolitary transition of ρ(d) for (λ ○ρ)(d), respectively.
Event f ′ must be appended first. Then, f can be appended before appending f ′′.

It is easy to see that, because of Definition 6.2, both proposed constructions can be
implemented and in both cases it holds that O[E[π∗]] ≅ O[(E′′,≺ ∣E′′ ,T ,η ∣E′′)].
The proof of the converse statement proceeds similarly to the one proposed above. ◾

Given a label λx, λx ≠ τ , and a labeled system S, unification of λx in S results in a system
with at most one transition that carries label λx and is not dead. Thus, it is enforced that
all occurrences of λx result from occurrences of a single transition. This allows to trace
back the relations of the 4C spectrum over labels to those over transitions. To this end,
it suffices to consider basic conflict, basic co-occurrence, and the eight instantiations
(Φ ∶={∀∀∀,∀∀∃,∀∃∀,∀∃∃,∃∀∀,∃∀∃,∃∃∀,∃∃∃}) of causality and concurrency.

Proposition 6.6 (Relations on labels) Let S ∶= (N,M), N ∶= (P,T,F,T ,λ), and S′ ∶=
(N′,M′), N′ ∶= (P′,T ′,F ′,T ,λ ′), be labeled systems, where S′ is obtained from S via
label unification of every label in T ′ ⊆ range(λ

′).8 Let λx,λy ∈ T ′∖{τ} be two labels.
Let tx ∈ T ′ and ty ∈ T ′ be the solitary transitions for λx and λy, respectively.

8 range( f ) denotes the range of function f , i.e., the image of f ’s domain under f .
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○ tx can conflict with ty in S′, i.e., tx⇢S′ ty, iff λx can conflict with λy in S, λx⇢λ ,S λy.
○ tx and ty can co-occur in S′, i.e., tx⥋S′ ty, iff λx and λy can co-occur in S, λx⥋λ ,S λy.
○ tx and ty are in the causality relation ↣φ

S′ in S′ iff λx and λy are in
the causal relation ↣φ

λ ,S in S, where φ ∈Φ .
○ tx and ty are in the concurrency relation ∣∣φS′ in S′ iff λx and λy are in

the concurrency relation ∣∣φ
λ ,S in S, where φ ∈Φ . ⌟

Proposition 6.6 is a consequence of Lemma 6.5. Recalling our earlier examples in Figs. 6
and 7, for instance, we observe that c ∣∣∀∀∃

λ
b and c↣∃∀∃

λ
b in the system in Fig. 6 since it

holds that t4 ∣∣∀∀∃
λ

t̂ and t4↣∃∀∃λ
t̂ in the system in Fig. 7, respectively.

Finally, note that the transformation presented in this section has value beyond the
operationalization of behavioral relations on labels. Since each label occurrence in the
resulting system relates to the occurrence of a unique transition while preserving the
observable behaviors of the original system (Lemma 6.5), this result allows for the
grounding of any computation over processes of labeled systems in the unlabeled case.

7 Evaluation

The approach for computing behavioral relations from Section 5 has been implemented
and is publicly available as part of the jBPT initiative [26].9 Using this implementation,
we conducted an experiment to assess the performance of the technique. The experiment
was carried out on a laptop with a dual core Intel CPU with 2.26 GHz, 4GB of memory,
running Windows 7 and SUN JVM 1.7 (with standard allocation of memory). To elim-
inate load time, each check of a behavioral relation between a pair of transitions was
executed six times, and we recorded average times of the second to sixth execution.

The study was conducted on a set of 367 systems that model financial services
and processes from the telecommunication domain. The systems were selected from a
collection of 735 models [27]. To ensure that each system has a unique terminal marking,
unsound systems [28] were filtered out. In the experiment, the reachability and the
covering problem (for bounded systems) were tackled using the LoLA tool ver. 1.14.10

Table 3 reports average times
(in milliseconds) for checking be-
havioral relations. The first two
columns report on the character-
istics of the collection by provid-
ing information on the number ‘n’
of systems within a given ‘Size’
range (measured as the number of
nodes). In order to obtain average
values, checks of behavioral rela-
tions between random pairs of dif-
ferent transitions were performed.
Each value was measured as the

Size n x⇢ y x⥋ y x ∣∣∃∃∃ y x ↣∀∀∀ y

1–50 211 45 45 44 44
51–100 106 50 49 50 50

101–150 39 95 97 351 492
151–200 5 182 187 1 626 1 544
201–250 3 66 70 90 82
251–548 3 65 128 145 132

1–548 367 54 55 101 115

Table 3: Average computation times (in ms)

9 http://code.google.com/p/jbpt/
10 http://service-technology.org/lola/

http://code.google.com/p/jbpt/
http://service-technology.org/lola/
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average time of checking 1000 random transition pairs and is recorded in the last four
columns. The last row in the table shows average computation times over all systems in
the collection. Note that the significant increase in computation times for x ∣∣∃∃∃ y (1 626
ms) and x ↣∀∀∀ y (1 544 ms) in the fourth row of the table is due to a single system for
which checks of each behavioral relation took approximately seven seconds.

8 Related Work

We already discussed how our work is embedded in existing classifications of models of
concurrency, i.e., fundamental behavioral relations provide a declarative characterization
of the behavior model induced by a process model under a certain semantics, cf. [4].
Below, we focus on other declarative behavioral formalisms and their applications.

For interleaving semantics, declarative characterizations of behavior models can be
formalized using temporal logic, most prominently Linear Temporal Logic (LTL) for
linear time semantics and Computational Tree Logic (CTL) for branching time, see [5]
for an overview. Then, behavioral relations are directly grounded in logic formulas over
actions as realized, for instance, in the DecSerFlow language for process modeling [29].
For concurrent semantics, in turn, rewrite logics have been used as a formal ground-
ing [30]. While all these approaches provide the basis for declarative characterizations of
behavior models, they do not specify which characteristics shall be captured, which is the
question addressed in this work. Also, only very few works target completeness of such
declarative characterizations under a certain semantics. For process models given as net
systems of a particular class (free-choice, live, and bounded), completeness of a certain
declarative characterization of interleaving, linear time semantics was demonstrated
in [10]. However, we lack more general results for larger classes of process models under
concurrent or branching time semantics.

Applications of basic behavioral relations for process model search and querying have
been discussed in Section 2 already. Many more applications have been explored in the
literature. Basic behavioral relations are at the core of many techniques in process mining,
which connects process models with events that represent action occurrences [31].
These techniques include discovery algorithms, such as the α-algorithm [32], as well
as methods for checking conformance between models and events [33]. Also, basic
behavioral relations are the foundation for techniques for model synchronization [34].
Here, a change that is located using behavioral relations in one model helps to locate a
region for applying the change in another model.

9 Conclusion

In this paper, we addressed the lack of a systematic exploration of fundamental behavioral
relations for the analysis of concurrent systems. To this end, we defined a set of relations
that capture co-occurrence, conflict, causality, and concurrency, proved that the proposed
relations give rise to implication lattices of relations, and suggested operationalizations
of these relations. Further, we lifted the relations as well as the operationalizations
to labeled net systems. The computation of behavioral relations was evaluated with
real-world process models. As such, our work builds a rigorous formal foundation for
analysis techniques that are based on behavioral relations.



The 4C Spectrum of Fundamental Behavioral Relations for Concurrent Systems 21

Some immediate directions for future work include: (i) development of techniques for
computing the remaining causality and concurrency relations of the 4C spectrum (beyond
the proposed extreme cases), (ii) generalization, and subsequent operationalization, of the
proposed behavioral relations, e.g., one may be willing to generalize results to weighted
nets, as well as to lift the proposed behavioral relations from executions to fair runs [35],
and (iii) application of the relations as behavioral abstractions for modeling of, reasoning
over, and analysis of systems.
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NICTA is funded by the Australian Government (Department of Broadband, Communi-
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